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Abstract

In this study, we examine the integral fooo %dm for real & > —2, initially posed by Dr. Brian Bradie in
the College Mathematics Journal. Traditional integration methods fail due to the complexity of combining
the arctangent function with a rational expression, presenting a challenge as the solution requires a closed-
form expression in terms of a. By adopting complex analysis, we discovered a novel representation and
parameterization of the arctangent function through strategic substitution using the contour 1++#i. Applying
the Cauchy Residue Theorem, we linked integral evaluations over complex contours to the sums of residues at
function poles, simplifying the integral’s expression with the aid of the dilogarithm function. Our approach
not only circumvents the limitations of directly applying the complex arctangent to yield a closed-form
expression in terms of «, but also innovates on the idea of advanced complex analysis techniques in solving

complex integrals involving arctangent.
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1 Introduction

1261. Proposed by Brian Bradie, Christopher Newport University, Newport News, VA. Evaluate the follow-

ing integral for real o > —2:
[ee] t —1
/ an—'(x) i
o l+azx+a?

Initially, we visualized the problem by graphing the integral’s behavior, particularly noting the asymptote at
o = —2. This graphical analysis, supported by a curve fit, indicated a potential for a closed-form solution,
as traditional methods such as integration by parts and Feynman’s technique prove inadequate for such an
arctangent-rational expression combination. Our exploration employs a novel method of complex contour
integration, initially generating numerical values for each « to support our analytical approaches.
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Figure 1: Fitted curve of I(a) on the y-axis and a on the x-axis, demonstrating the asymptotic behavior
and suggesting the potential for closed-form solutions.

With the employed curve fit suggesting a closed-form solution, we further investigated specific cases of a:

a=0

dr = = —

/°° arctan x (arctanz)? | 72



a =2

* arct 1
/ e <—1n(x2+1)+21n(x+1)+
0

o 4

The initial drive to plugging in easier-to-work with alpha’s was to establish a basic understanding of the
interactions different a values have on the problem. From this, we can better understand strategies to ap-
proach the problem to begin generalizing for any .

1+ 22+ 22 !

2(x — 1) arctanx ’00 o
z+1

This integral is not amenable to traditional approaches such as integration by parts nor Feynman’s method.
In this problem, we explore a novel method of solving definite integrals involving arctangent in a rational
expression, which connects arctangent to the complex logarithm using contour integration.

2 Methods

2.0 Defining a New Function

In the current form, the function f(x) = % is difficult to work with. Our main motivation for exploring

the problem in the context of the complex plane was that we thought we would be able to express arctan(x)
in a different way in the complex plane, which would make the problem easier to approach. For instance,
we noticed the complex inverse tangent function arctan(z) = 11. In(%2). However, simply plugging it in and

— 2 itz
trying to manipulate the expression ws not effective.

Im +

t1
L2 =1+ti

2l /)

0, ‘

0] 1 Re
In(z)
Hz) = —224+(2—ai)z+ i’
Plugging in z = 1+ ti — t = —i(z — 1), the denominator is equal. Our aim was that we could isolate the

original to integral by integrating along the contour C; = 1+ ti for ¢ € [0, 00), and isolating the real part
of the parameterized expression. We now need to find other contours to close the region such that we could
use the Cauchy Residue Theorem to simplify it.

2.1 Cauchy Residue Theorem
The Cauchy Residue Theorem, the essential theorem behind contour integration, states that for a given f(z)

which is analytic in the region A except for a set of isolated poles, and C, a simple closed curve in A that
doesn’t go through any of the poles of f and is oriented counterclockwise,

/ f(z)dz = 2mi -y (polesof finside C)
C



In this section, we will focus on setting up the right side of the equation, exploring different sets of contours
and their respective integrals to see what lets us evaluate the LHS.

We will focus on the case where there are no poles in or on the curve (excluding endpoints, such as 0 + 0i
in this case) formed by the set of contours, so that the RHS for the Residue Theorem simplifies to 0. To
do this, we will start with the case where the imaginary part of z is negative, since the contours we are
exploring are in the positive imaginary part of the complex plane.

We found an expression for poles by setting the denomiminator of f(z), —22 + (2 — i)z + «i, equal to
0 and solving for z with the quadratic formula to get an expression in terms of a. We split that solution
into real and complex parts, and set the complex part negative to find the inequality representing « in that
case. This inequality was

4 . 1 —4
\/a4 + 8a3 + 4002 + 3200 + 16 - sin [ = arctan o <0
2 a? +4a+4

which simplified to,
47a >0
a?+4a+4

meaning that for this case, a > 0, and it further suggests the asymptotic behavior around @ = —2.

2.2 First Contour Attempted
Let’s explore this section of a circle, centered at 0 with radius r:

Im -

where R — oo,
Cy=1+tiforte|0,vVR?—1],
Cy=tfortell,R],

C3 = Re' for t € [0, arccos %],

The contour C; integrates along the line C; = 1 + ti, and after parameterised,

3 f(z)dz = /OOo F(1 4 ti) - %[1+ti]dt

_ /°° arctan (t) — Inv/1 + t2i dt
—Jo 1+at+t2
> t t)—1 1+ t%
/ f(z)dz:/ arctan (t) n\/2 + i
e o 1+at+t

Then, isolating the real part,

[e%S) . S5 [e%S)
Re (/ arctan (t) — lnv/1 + t2i dt) _ / arctan (t) &t
0 0

1+ ot +t2 1+ ot +t2




It represents the integral from the original problem. C5 integrates along the real axis. To start with this, we
used partial fractions to separate f(z), so that for

01:1—%+%\/4—a2 and cp = —%—%\/4—@2,

1 Inz Inz
1(z) = V4 —a? (z—01 ; Z—Cz)

This function cannot be integrated in elementary functions, so it requires the introduction of a special
function called the dilogarithm. Also known as Spence’s function, The dilogarithm Lis(2) is a special case of
the polylogarithm Li,(z) for n = 2. Polylogarithms have deep connections to exploration of the Riemman
Zeta Function, Feynman Integrals in quantum field theory, combinatorics, and are generally extremely useful
special functions. It can be expressed as

0 —Uu

u
or
. “In (u)
Lisg(1—2) = —=du.
ia(1—2) /1 1_udu

Integrating f(z) along Cy =t for ¢t € [1,1 + r] is simple since it is along the real axis, so it does not need to
be parameterized.

o0 d
[ seyz= [ 50 G
e In(t)
*/1 —t2 4 (2 — i)t + i dt
[ In(t)
/02 J(z)dz = /1 P —aiita
T
/1 V4 — a?
( In 2z 3 Inz ) &
zZ—cC Z—Co

it () e (5) rmn (o (-2) 1 (-5))

or in its expanded form,

Evaluating [, f(z)dz,

f(z)dz = lim

/ arccos % —(—t +1n (R)i)Reti d=0
Cs R—o0 Jg —R2e2ti 4 (2 — ai)Reti + i

Since the denominator of the integrand has a higher degree of R,



Using partial fraction decomposition in a similar manner to the integral Cs,

1

arccos 5. 1 teti teti
= — — dt
0 4—a?2 \e"—cx e*—q

[ =5+ In(r)i
s f(Z)dZ - /1 tz .

+ (a+2i)t+ i

where ¢ — oo.

/ f()dz+ | f(z)dz=0 = f(z)dz = f(z)dz
—C Ca Ca

C1

CIn|l+1 ; e |
. / n |1+ it| 4 ¢ arctan(t) Dt = / j n(t). dQt
t2—|—2at+1 1 i+ (2 — i)t — 2

arctan(t i In(t)
= dt = — , - dt
t2+2at+1 1wl (2 — i)t — 2

_ /OO In(t) (2t — t2) U
1 (2t —12)° + a2(t —1)2

This is a significant result because we have redefined the original integral as the real component of the
integral along G2. Although its form proved too difficult for us to simplify, it suggests the capability to use
a similar approach for other integrals with arctangent in a rational expression.

2.3 Second Contour Attempted

Im Cy ¢
R
Cg ES O
1
Co
0] Re

where R — oo,
Cy=1+tifortel0,vVr2—1],
Cy=e' fort €[0,5],

Cs =tiforte[l,r],

Cy = Re' for t € [arccos 1, Z],

The integral along C; resolves in the same manner as shown in 2.2. The integral along Cy is also equal to 0
for the same reason the integral along C5 in the previous section was, which is that the integrand approaches
0 as R — oo.

Simplifying the integral along Cs,

1

f(z)dz:/o _ezn+((ti)e L ya

2 — ai)el + ai

Cs

L1
I8

arccos - —t 2ti
:/ 2t Nt - dt
o —e?t 4+ (2 — ai)et’ + i




Solving this integral either requires dilogarithms, which resulted in the indefinite integral,

1 r r
= ———— | Li - —Li -
¢4—a2< 2(1—%;%—&2) ( —%’—M—oﬁ)

r r
+In(r)|{In|1-— - —In{1-— -
(- ) ()

Which we weren’t able to simplify after plugging in the bounds, or using Euler’s formula to expand the
expressions within the integrand, which we were not able to solve either.

When trying to solve for the integral along Cs,

[ In(t4) (i
L= | e g O

_ /oo —T 4 In(t)i
1

24+ (2i+a)t + i

which we could easily solve using partial fraction decomposition. However, this does not work because the
denominator has real and complex parts, so we need to multiply the denominator and numerator by the
conjugate of the denominator to make the denominator real, in order to be able to take the real part of the
expression. Doing this step and taking the real part results in an logarithm remaining in the numerator, so
were not able to simplify the expression.

We initially made the mistake of assuming that taking the real part of the integral would yield | 100 dt,

3 Indefinite Integral

3.0 Definitions



Definition 1. The dilogarithm, denoted as Lis(u) for a variable u € C, can be defined as
In(1-
Lia (1) = _/Mdu
u

Theorem 1. For a given variable x € C, and a constant ¢ € C,
1
/ Sy = Liy (a:) +In(x)In (1 - f) +C
c

C

Tr —cC

Proof:
First, rewrite the expression in order to use integration by parts.

/lnx dw:—l/ lngcz e
C 1—2

r—cC

1j£ dzx. Then, du = %d{l? and v =In (1 — %) Therefore,

Letuzlnxanddv:—%.
1 In(l—2
/ L dx—ln(z)ln(lm)/n(c)dx
r—c c -
Lett:%7sodt:%dm7
In(1-2 In(1—t
[ROD RO,
T t-c
In(1—¢
:/ n(t )it = Liy(t) + ©
= Lip <£>—|—C
c
Theorem 2. For a given variable x € R,
1 —x
arctanz = —In ( >
21 i+ x
Proof:
Let arctanz = z € Z. Therefore,
sin z 1 eiz — efiz 1 e2’iz -1
r=tanz = ==.= — =
COsS 2 1 e +et? 7 62”—"-1
L —x

2iz :
. e — 1 ) 1+
2:522.7—“32”: — = -
e?? 4+ 1 1—ix i+x

Solving for z,

. T —T 1 1—x
2iz =1In | - —z=—In|{ -
i+ 21 i+



3.1 Solving the Intgeral
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The original integral can be expressed differently using Theorem 2:
1 In (’L*CE)
arctan x 2i itx
/ _arctant / 2\ gy
14+ az + 22 14+ az + 22
1 In (7 — In (3
_ L / n(i—x) dx—/ n(i+ x) i
21 14+ az + 22 14+ ax + 22
Letting 1 =i —x and zo =i+ x — x =1 — x1 = 22 — 1, the expression simplifies to:

1 1 1
= _ / 5 n(xl? ,dx—/ 5 n(ajg) - dx
21 3+ (—a— 20z + i x5+ (o — 2i)x2 — i

Splitting up the integrals with partial fraction decomposition,

In (z1) In (z1)

1
<W/$1 z—i— + W) Ty — (z+% ("2274)
(

In ( ,1132) In (x2)

\/;/xg—(l——f—\/r) xg—(i—

B 1 (/ In (z1) B In (z1) da
WA=P\S gy - (i+ 5+ ) w1+ g - V)

Using Theorem 1 to simplify the integrals,
1 <L‘ Z1 Li x1
2vai—aZ\ it oy Vet iy o vard

X1 X1
+In(z)(Infl-—————|-In|1l- —————
i+%+\/a22—4 ’L'+%* a;—4
A t—5 3

Plugging x1 and x5 back in and simplifying further,

1 <L' ( 2 — 2z > Li < 2 — 2z )
= i —Li
Wi-a2\ \2itat+va?_1 \2ita—vaZ_4
21 — 2x 21 — 2x
+In(t—2z)|{In{1-— —In{1-
( )< ( 2i+o¢+\/o¢2—> ( 2i+a—\/a2—4)>
21+ 2 21+ 2
2l —a—+vVa? -4 2i —a+ Va2 —
24 2z 2t + 2x
+In(i+z)(In(1-— —In(1- +C
( )< ( 2@'04\/0424) ( 2ia+\/a24)>)

11




We were not able to simplify the expression after plugging in the bounds, but this may be a possible direction
for future exploration.
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4 Discussion

4.0 Future Work

While €y and Cj5 from the second contour were promising, we need two curves to close the contour which
we can simplify, and they must be in the positive imaginary plane.
In the future we will consider a new geometry for the contour, and possibly allow poles within the region,
exploring curves with negative imaginary components. Another idea is a contour that depends on the vari-
able a to simplify based on how the integral shifts with different o

Furthering our understanding of properties and limits of dilogarithms could prove useful in continuing to
look at the indefinite integral in an attempt to continue manipulating or evaluating it.

With investigating behaviors of the dilogarithm and possible alternative substitutions or contours to test,
we are yet to find a solution. Contour integration is promising due to simplifying the integral itself and
separating it into a simple RHS and our choice of a LHS so that we can manipulate it to best substitute for
the simplest answer.

4.1 Conclusion

While these specific contours did not lead to nicely simplified solutions, aspects of each contour were valuable
in looking at end behaviors especially those involving curves that the integral approaches 0, or looking at
how the problem reacts when the contour you are integrating along lies directly on either the real axis or
the imaginary axis.

Also, the investigation of dilogarithm in the future could prove useful as polylogarithms often appear in
complex analysis.

Fundamentally, our approach allows for a general way to rewrite any integrals containing arctangent by
integrating along the contour z = 14 ti. This substitution and parametrization could allow us to apply this
technique to various problems. Furthermore, familiarizing ourselves with concepts of complex analysis and

specifically the Cauchy Residue Thorem with contour integration is valuable to apply to similar problems
that involve the complex plane.
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